BLAKE

SWISS MADE
Jean-Philippe Aumasson
FHNW Windisch, Switzerland

Luca Henzen
ETH Zürich, Switzerland

Willi Meier
FHNW Windisch, Switzerland

Raphael Phan
Loughborough Uni, UK
BLAKE-64
for 64-bit words and 64-byte digests
10 cycles/byte

BLAKE-32
for 32-bit words and 32-byte digests
16 cycles/byte
the ChaCha function

bijective nonlinear transform of 4 words

\[
\begin{align*}
a &\,+=\, b & d &= (a \oplus d) \ll 16 \\
c &\,+=\, d & b &= (b \oplus c) \ll 12 \\
a &\,+=\, b & d &= (a \oplus d) \ll 8 \\
c &\,+=\, d & b &= (b \oplus c) \ll 7
\end{align*}
\]
BLAKE based on tweaked ChaCha

repeated 80 times in BLAKE-32

\[a \leftarrow m_j \oplus \text{const}_i \]
\[a \leftarrow b \quad d = (a \oplus d) \gg 16 \]
\[c \leftarrow d \quad b = (b \oplus c) \gg 12 \]
\[a \leftarrow m_j \oplus \text{const}_j \]
\[a \leftarrow b \quad d = (a \oplus d) \gg 8 \]
\[c \leftarrow d \quad b = (b \oplus c) \gg 7 \]
BLAKE based on tweaked ChaCha

repeated 112 times in BLAKE-64

\[a += m_j \oplus \text{const}_j \]
\[a += b \quad d = (a \oplus d) \gg 32 \]
\[c += d \quad b = (b \oplus c) \gg 25 \]
\[a += m_j \oplus \text{const}_j \]
\[a += b \quad d = (a \oplus d) \gg 16 \]
\[c += d \quad b = (b \oplus c) \gg 11 \]
compression function state

initialized with salt, counter, chaining value
BLAKE round

apply the ChaCha function to each column
BLAKE round

apply the ChaCha function to each column
BLAKE round

apply the ChaCha function to each column

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BLAKE round

apply the ChaCha function to each column
BLAKE round

or to all columns in parallel
BLAKE round

apply the ChaCha function to each diagonal
BLAKE round

apply the ChaCha function to each diagonal
BLAKE round

apply the ChaCha function to each diagonal
BLAKE round

apply the ChaCha function to each diagonal
BLAKE round

or to all diagonals in parallel
14 rounds for BLAKE-64

10 rounds for BLAKE-32

full diffusion in 2 rounds

best attack on ChaCha on 3.5 rounds

best attack on BLAKE on 2 rounds
BLAKE’s iteration mode
(simplified HAIFA)

randomized hashing

RO-indifferentiability

2^n second preimage resistance

preserves collision and preimage resistance
BLAKE in hardware

straightforward implementation

various trade-offs speed/area

small memory requirements

our implementations

4 different architectures

on 0.18\,\mu m CMOS ASIC

on FPGA (Virtex-4, Virtex-5, Virtex-II-Pro)
ASIC architectures

high-throughput: 8 ChaCha functions

BLAKE-64: 132 kGE 5.9 Gbps
BLAKE-32: 58 kGE 5.3 Gbps
ASIC architectures

small fingerprint: 1 ChaCha function

BLAKE-64: 20 kGE 181 Mbps
BLAKE-32: 10 kGE 253 Mbps
ASIC architectures

trade-off space/speed: 4 ChaCha functions

BLAKE-64: 82 kGE 4.8 Gbps
BLAKE-32: 41 kGE 4.1 Gbps
BLAKE-32 lightweight hashing core

13.5 kGE 128 Mbps
BLAKE in software (eBASH)

in the top 5

faster than SHA-2

on NIST reference platform

BLAKE-64 ≈ 10 cycles/byte

BLAKE-32 ≈ 16 cycles/byte
eBASH figures

amd64, 2000MHz, AMD Athlon 64 X2 (40fb2), mace

BLAKE-64 11.32 cycles/byte
BLAKE-32 17.86 cycles/byte
eBASH figures

x86, 333MHz, Intel Pentium 2 (652), boris

BLAKE-64 56.32 cycles/byte
BLAKE-32 25.74 cycles/byte
eBASH figures

ia64, 997MHz, HP Itanium II, nmi0020

BLAKE-64 8.54 cycles/byte
BLAKE-32 20.69 cycles/byte
why BLAKE for SHA-3?

one of the first candidates published, no attack faster than SHA-2 and than many SHA-3 candidates based on a known algorithm (ChaCha/Salsa20)

one of the simplest designs

no AES-dependence
BLAKE’s webpage

http://www.131002.net/blake/

complete specification

security analysis

reference C code

eBASH submission

light C code

VHDL code
BLAKE

SWISS MADE