
On a bias of Rabbit

Jean-Philippe Aumasson⋆

FHNW, 5210 Windisch, Switzerland

Abstract. This paper demonstrates the existence of a non-null bias in the keystream generated
by the synchronous stream cipher Rabbit, a candidate to the eSTREAM project, from the
observation that the core function is strongly unbalanced. The keystream bias is greater than
2−124.5 for certain bits, and this leads to a distinguisher requiring about 2247 128-bit samples
of keystream derived from random keys and random IV’s, which remains much higher than the
cost of exhaustive key search.

Rabbit is a candidate [10] to the eSTREAM project [1], first presented at FSE 2003 [11],
targeting both hardware and software environments, having 128-bit key, 64-bit IV, and 513-
bit internal state. Its authors made the effort of a deep security analysis – in the reference
article [10] and a series of white papers [4, 8, 6, 7, 5, 3], they presented convincing arguments in
favor of their cipher’s resistance to the well-known algebraic, correlation, differential, guess-
and-determine, and statistical attacks – and until now no other publication tackled Rabbit.
In this paper, after a brief presentation of the cipher in Section 1, we state in Section 2
some properties of the function Gn : x → x2 ⊕ (x2 ≫ n) mod 2n, which is essential in the
keystream generation algorithm. In particular, we observe that the images by G32, as bit
words, have in average significantly less zeros than ones at each offset. From this property,
we give a method to compute the bias of the keystream bits in Section 3, and illustrate it
with the example of the least significant bit of certain keystream subblocks, which is null with
probability greater than 1

2 +2−124.5. This leads to a distinguisher requiring about 2247 128-bit
samples of keystream derived from random keys and random IV’s.

1 Preliminaries

1.1 Notations

The following symbols are used in the paper.

– ⊕: XOR operator, either between single bits or bit words.
– ≪,≫: bitwise shift operators.
– ≪,≫: bitwise rotation operators.
– ||: bitwise concatenation operator.
– |x|: length of x in bits.
– base-16 notation, in sans serif font (7B = 123).
– base-2 notation, in italic font (1111011 = 123).

The bias of some binary random variable X is defined as the value 1
2 − P (x = 1) = P (X =

0) − 1
2 , and so its expectation is simply P (X = 1). Thus if X1 and X2 have bias 2−a and

2−b, then the random variable X1 ⊕X2 has bias 2−a−b+1. Except special mention, “random”
stands for “uniform random”, in the appropriate sample space.

⋆ Supported by the Swiss National Science Foundation under project number 113329.

1.2 Description of Rabbit

Rabbit is a synchronous stream cipher, and both encryption and decryption are performed
by xoring the argument (plaintext or ciphertext) with the keystream derived from the 128-bit
secret key and the 64-bit IV (public). The internal state at epoch t ≥ 0 is composed of the
sequences of 32-bit values {xj,t}0≤j≤7 and {cj,t}0≤j≤7, plus the bit φ7,t. The state at t = 0 is
the initial state, obtained after key & IV setup, and the state at epoch t ≥ 1 is recursively
defined by the equations given below.

c0,t = c0,t−1 + a0 + φ7,t−1 mod 232,

cj,t = cj,t−1 + aj + φj−1,t mod 232, 0 < j < 8,

where

φj,t+1 =

{

1 − 1Z/232Z(c0,t−1 + a0 + φ7,t−1) if j = 0

1 − 1Z/232Z(cj,t−1 + aj + φj−1,t) if j > 0
,

and the aj ’s are constants: a0 = a3 = a6 = 4D34D34D, a1 = a4 = a7 = D34D34D3, a2 = a5 =
34D34D34D. (and 1Z/232Z : N → {0, 1} is the indicator function of the set Z/232

Z).

x0,t+1 = g0,t + (g7,t ≪ 16) + (g6,t ≪ 16)

x1,t+1 = g1,t + (g0,t ≪ 8) + g7,t

x2,t+1 = g2,t + (g1,t ≪ 16) + (g0,t ≪ 16)

x3,t+1 = g3,t + (g2,t ≪ 8) + g1,t

x4,t+1 = g4,t + (g3,t ≪ 16) + (g2,t ≪ 16)

x5,t+1 = g5,t + (g4,t ≪ 8) + g3,t

x6,t+1 = g6,t + (g5,t ≪ 16) + (g4,t ≪ 16)

x7,t+1 = g7,t + (g6,t ≪ 8) + g5,t,

with
gj,t = (xj,t + cj,t+1)

2 ⊕ [(xj,t + cj,t+1)
2 ≫ 32] mod 232.

The function g is thus essential for the security of Rabbit. (In the above equation, additions
are computed modulo 232, and squarings modulo 264, otherwise the second operand of the ⊕
would be null.)

At round t ≥ 0, a 128-bit block of keystream st is extracted as follows.

s
[15...0]
t = x

[15...0]
0,t ⊕ x

[31...16]
5,t s

[31...16]
t = x

[31...16]
0,t ⊕ x

[15...0]
3,t

s
[47...32]
t = x

[15...0]
2,t ⊕ x

[31...16]
7,t s

[63...48]
t = x

[31...16]
2,t ⊕ x

[15...0]
5,t

s
[79...64]
t = x

[15...0]
4,t ⊕ x

[31...16]
1,t s

[95...80]
t = x

[31...16]
4,t ⊕ x

[15...0]
7,t

s
[111...96]
t = x

[15...0]
6,t ⊕ x

[31...16]
3,t s

[127...112]
t = x

[31...16]
6,t ⊕ x

[15...0]
1,t

There, s
[a...b]
t , a ≥ b, denotes the (a − b + 1)-bit subblock going from the b-th to the a-th bit

(right-to-left).
We do not recall the key & IV setup procedure, since our further developments does not

relate to this initialisation process, but instead considers a random initial state.

2 The function g

The function g aims at destroying linear relations in the cipher, “following initial ideas from

chaos theory” [10]. Indeed the modulo square is known to be a strongly non-linear operation,
and the authors of Rabbit were particularly attentive to its security properties: they studied
its algebraic degree, differential properties, second degree approximations [7], diffusion proper-
ties [3], and the correlation between Hamming weights of the argument and its image [5], and
found no notable weakness. One clear drawback of this function is the slowness in hardware
of the 32-bit integer squaring (8 squarings are necessary for 128 bits of keystream), however
Rabbit is fast in software environments (see benchmarks [9]).

2.1 Basic properties

Consider the function Gn : {0, 1}n → {0, 1}n,

Gn : x → x2 ⊕ (x2 ≫ n) mod 2n,

for some integer n ≥ 2. It is clear that properties holding for a random argument of G32 would
also hold for random arguments of g and a random internal state. Below several properties of
Gn are presented, where each one is followed by a brief justification.

Property 1 For all even n ≥ 2, Gn(1) = Gn(2n/2) = 1, so Gn is not bijective for even n’s.

Indeed we have (2n/2)2 = 2n ≡ 0 mod 2n, thus Gn(2n/2) = 2n ≫ n, which is equal to one
since the only non-null bit in position n + 1 is shifted back to the least significant offset. To
illustrate this, let n = 4 (so 2n/2 = 4 = 0100):

G4(4) = 0100 2 ⊕ (0100 2 ≫ 4) = 10000 ⊕ (10000 ≫ 4)

= 10000 ⊕ 1

≡ 1 mod 24.

Property 2 For all even n ≥ 2, if x < 2n/2, then Gn(x) = x2.

Indeed, x < 2n/2 ⇒ x2 < 2n, and so the non-null bits are all deleted by the rotation.

Property 3 For all n ≥ 2, if the 2n-bit words x = x1||x2 and y = y1||y2 are perfect squares,

such that |xi| = |yi| = n and x1 ⊕ x2 = y1 ⊕ y2, then Gn(
√

x) = Gn(
√

y).

This simply comes from the fact that Gn(
√

x1||x2) = x1 ⊕ x2.

Property 4 For all n ≥ 2, Gn(0) = 0 and Gn(2n − 1) = 2n − 1.

The first statement is trivial, and the second comes from the following equality (proven in
Appendix B):

(2n − 1)2 =

(

n−1
∑

k=0

2k

)2

= 1 +

2n−1
∑

k=n+1

2k, for n ≥ 2.

Indeed, the property is easily proved using this result:

(2n − 1)2 ⊕
(

(2n − 1)2 ≫ n
)

=

(

1 +

2n−1
∑

k=n+1

2k

)

⊕
n−1
∑

k=1

2k

≡
n−1
∑

k=0

2k mod 2n

= 2n − 1.

Informally, the number 2n − 1 only has non-null bits in the n first offsets, and the squaring
shifts all those bits but the least significant of n positions, replacing them by zeros. For
instance, consider n = 4 (so 2n − 1 = 15 = 1111):

G4(15) = 1111 2 ⊕ (1111 2 ≫ 4) = 11100001 ⊕ (11100001 ≫ 4)

= 11100001 ⊕ 1110

≡ 1111 mod 24.

Property 5 For all even n ≥ 4, if x =
∑n−2

k=n/2−1 2k, then Gn(x) = x.

This follows from the equality (proven in Appendix B)





n−2
∑

k= n
2
−1

2k





2

= 2n−2 +

2n−3
∑

k= 3

2
n−1

2k, for 4 ≤ n even.

To see Property 5, set x =
∑n−2

k=n/2−1 2k, and compute

x2 ⊕ (x2 ≫ n) =






2n−2 +

2n−3
∑

k= 3

2
n−1

2k






⊕





n−3
∑

n
2
−1

2k





≡ 2n−2 ⊕





n−3
∑

n
2
−1

2k



 mod 2n

≡
n−2
∑

k=n/2−1

2k mod 2n

= x.

For instance, for n = 8,
∑6

k=3 2k = 120 = 1111000 , and so

G8(120) = 1111000 2 ⊕ (1111000 2 ≫ 8) = 11100001000000 ⊕ 111000

≡ 1111000 mod 28.

Property 6 For all n≥ 2, the number 2n + 1 is square-free if and only if any non-null x
verifies Gn(x) 6= 0.

(Recall that a number is square-free if and only if can be decomposed as a product of distinct
prime numbers.) To see this property, let’s prove separately the two implications. First, we
demonstrate the contraposed of the proposition “if any non-null x verifies Gn(x) 6= 0, then
2n + 1 is square-free”, which is “if 2n + 1 is not square-free, then there exists a non-null
x such that Gn(x) = 0”: let x be an argument of Gn, and denote x2 = y. If Gn(x) = 0,
y can be written y = y1||y1, with |y1| = n (n is not necessarily even here), so we have
y = y1 + 2ny1 = y1 · (2n + 1). Consider the equation

y1 · (2n + 1) = x2,

with unknowns x and y. We assumed that 2n+1 was not square-free, so there exists an integer
d ≥ 2 such that d2 divides 2n + 1, thus a valid non-null solution is y1 = (2n + 1)/d2 < 2n. For
instance, the perfect square 23 + 1 leads to the solution (x, y1) = (3, 1), and so

G3(3) = 011 2 ⊕ (011 2 ≫ 3)

= 001001 ⊕ (001001 ≫ 3)

≡ 0 mod 23.

(Another solution here is (6, 4)). So we proved the existence of a non-null x mapping to zero.
To prove the converse implication, assume that 2n + 1 is square-free: refering to our previous
equation, y1 must be of the form d2 ·(2n +1) > 2n, but we need y1 < 2n, thus the only solution
is 0 in that case.

It may be interesting to search a criterion of n for 2n + 1 to have square factors, but
this comes out of the scope of this paper. In the specific case of interest for Rabbit, we have
232 + 1 = 641 × 6700417, both those divisors being primes, thus G32(x) = 0 only if x = 0.

2.2 Distribution of single bits

Table 1 and Table 2 give the distribution of the bits in a random image of the reduced versions
G8 and G16. Our notations deserve a few explanations: we present the binary logarithm of
the bias instead of the bias itself (biases are all strictly positive here, so their logarithm is
well-defined); the integer value ∆ is the difference between the quantity of zeros of a uniform
distribution (2n−1 here) and the quantity observed in the distribution of the function Gn.

Table 1. Distribution of the bits in G8(x).

offset 0 1 2 3 4 5 6 7

log2 bias -5.00 -5.00 -5.19 -5.00 -4.68 -5.19 -5.00 -5.00

∆ 8 8 7 8 10 7 8 8

It appears that G8 and G16 are unbalanced; more zeros than ones appear at each offset.
This property also holds for the full version G32; experimental results, presented in Table 3,
show that

−17.35 < log2 bias < −16.40,

with the highest bias reached in position 4, and the smallest in position 13.

Table 2. Distribution of the bits in G16(x).

offset 0 1 2 3 4 5 6 7

log2 bias -9.00 -9.00 -8.80 -8.89 -9.00 -8.46 -9.45 -8.92

∆ 128 128 147 138 128 186 94 135

offset 8 9 10 11 12 13 14 15

log2 bias -8.74 -8.89 -8.98 -8.81 -8.82 -9.61 -8.88 -9.01

∆ 153 138 130 146 145 84 139 127

Table 3. Distribution of the bits in G32(x).

offset 0 1 2 3 4 5 6 7

log2 bias -17.00 -17.00 -16.92 -17.12 -16.40 -17.03 -16.76 -17.11

offset 8 9 10 11 12 13 14 15

log2 bias -16.49 -17.33 -16.89 -16.99 -16.95 -17.34 -16.81 -17.03

offset 16 17 18 19 20 21 22 23

log2 bias -16.42 -17.06 -16.73 -16.87 -16.71 -17.02 -16.83 -17.04

offset 24 25 26 27 28 29 30 31

log2 bias -16.77 -17.21 -16.88 -17.10 -16.55 -17.26 -16.67 -17.03

2.3 Distribution of n-bit patterns

This section aims at giving more precise results on the distribution of g, which cannot be
obtained by the previous distributions of the bits, because of the non-independence of the
variables. As expected from the previous results, the computation of n-bit patterns for n =
2, . . . , 4 revealed strong deviation from the uniform distribution.

Here we just consider the case n = 2: Table 4 below presents the distribution of digrams
in the least significant bits (LSB’s). We give the logarithm of the absolute value of the biases,
and add the superscript ⋆ for negative biases; ∆ is again the difference between the quantity
of a uniform distribution and the quantity observed, for each pattern.

Table 4. Distribution of the digrams in the LSB’s of G32(x).

pattern 00 01 10 11

log2 |bias| -17.00⋆ 0 0 -17.00

∆ -32 767 0 0 32 769

By computing the distribution of digrams in the 16-th and 17-th, and in the 24-th and
25th bits (see tables 7 and 8 in Appendix A), we can deduce the distribution in the xk,t’s,
presented in Table 5. Since the spread of the carry bit dramatically scrambles the patterns, we

get no significant bias in the digram distribution of x
[31...16]
5,t , but if the keystream subblocks

were computed as s
[15...0]
t = x

[15...0]
0,t ⊕ x

[15...0]
5,t , then the 2-bit patterns in the LSB’s would have

biases respectively 2−40.99, −2−40.99, 2−43.89, and −2−43.93.

As predicted, the bits in the images by G32 do not exactly behave like independent random
variables: indeed, the pattern 000 occurs with bias 2−17.62, whereas it should be 2−17.39 if
the variables were independent. Table 9 in Appendix A gives the distribution of the 3-bit
patterns, which is also statistically close the the distribution obtained under the independance
hypothesis.

Table 5. Distribution of the digrams in xk,t, 0 ≤ k < 8 .

pattern 00 01 10 11

k even -22.28⋆ -19.46 -20.45⋆ -20.96⋆

k odd -21.72 -21.72⋆ -31.42⋆ -31.42⋆

3 Bias in the keystream

In this section we give a method to compute the bias of each bit in a keystream block st, and

illustrate it with the computation of the bias of s
[0]
t , the first bit of st. Recall that

s
[0]
t = x

[0]
0,t ⊕ x

[16]
5,t ,

so we first compute the bias of x
[0]
0,t and x

[16]
5,t , under the assumption that the arguments of g

are random. We denote hereafter pi the probability that the i-th bit of G32(x) is 1, and set
qi = 1 − pi, 0 ≤ i < 32 (refer to Table 3 for the values of the pi’s).

It is clear that x0,t is odd (first bit non-null) if and only if either g0,t and (g7,t ≪ 16) and
(g6,t ≪ 16) are odd, or if exactly one of them is odd. Those three random variables g0,t, g6,t,

and g7,t, are assumed independent, therefore x
[0]
0,t is non-null with probability

̺0(x0,t) = p0 · p2
16 + p0 · q2

16 + 2 · q0 · p16 · q16 ≤ 1

2
− 2−47.85.

Since we have to take into account the carries of the sum, computing the bias of the 17-th
bit of x5,t is less simple. Let p′ and q′ be the distribution vectors (for ones and zeros) of the
32-bit word (g3,t + g5,t). Then the i-th bit of (g4,t ≪ 8) + (g3,t + g5,t) = x5,t is non-null with
probability

̺i(x5,t) = Ri−1(pj · p′i + qj · q′i) + (1 − Ri−1)(pj · q′i + qj · p′i)
= (2 · pj · p′i − pj − p′i)(2 · Ri−1 − 1) + Ri−1,

where j = i−8 mod 32, and Ri is the probability that the i-th offset returns a non-null carry
bit, expressed by the recurrence

R0 = p0 · p′0
Ri = Ri−1

(

pj · q′i + qj · p′i + pj · p′i
)

+ (1 − Ri−1)
(

pj · p′i
)

= Ri−1(pj + p′i − 2 · pj · p′i) + pj · p′i.

Here we suppose implicitely that the probability to return a carry bit at a given offset is
independent from the bit distribution after this position, whereas it is not; we will assume
that this approximation does not significantly weaken the results.

The bias of s
[0]
t can thus be expressed using the above equations: first compute the distri-

bution of the first 17 bits of (g3,t + g5,t), then combine it with the distribution of (g4,t ≪ 8)
to get the carries distribution, and finally compute from this the bias of the 17-th bit of x5,t.

Using the multi-precision library GMP [2], to compute the ̺i(x5,t)’s from the results in

Table 3, we find that x
[16]
5,t has bias ≥ 2−76.73, and so

P (s
[0]
t = 1) ≤ 1

2
− 2−124.50.

Table 6. Bias in x2k+1,t, 0 ≤ k < 4.

offset 0 1 2 3 4 5 6 7

log2 bias -48.77 -63.27 -52.72 -55.34 -59.92 -59.31 -60.17 -63.24

offset 8 9 10 11 12 13 14 15

log2 bias -63.96 -67.61 -68.64 -70.96 -72.04 -75.17 -75.47 -77.50

offset 16 17 18 19 20 21 22 23

log2 bias -76.73 -79.07 -78.72 -79.21 -79.03 -80.04 -79.45 -79.90

offset 24 25 26 27 28 29 30 31

log2 bias -78.90 -80.00 -79.36 -79.82 -87.84 -81.24 -79.61 -79.99

By referring to the description of the cipher in Section 1.2, the same calculus can be done

for all the other subblocks. One would get exactly the same distribution as for s
[15...0]
t for the

subblocks s
[47...32]
t , s

[79...64]
t , and s

[111...96]
t (the distribution of the other subblocks is very close

to this), that is,

P (s
[k]
t = 1) ≤ 1

2
− 2−124.50, for k ≡ 0 mod 16.

Indeed, xi,t and xj,t have the same distribution if and only if i and j have the same parity,
for all t ≥ 0. We give in Table 6 this distribution for odd subscripts (which is close to the
distribution for even ones); from these results, it is clear that the bias in the LSB of a subblock
is much greater than at the other offsets (the bias in the second bit is about 2−141). Therefore,
the distinguisher only based on those bits is close to the optimal one: it would require about
2247 keystream blocks (see Theorem 2 in [12]), produced by random keys with random IV’s,
which is much greater than the cost of exhaustive search.

Eventually, our results are clearly not a threat for Rabbit, but stress the non-uniformity
of the bits’ distribution given a random initial state, under certain assumptions.

Acknowledgements

This paper benefited greatly from comments from Willi Meier and Erik Zenner.

References

1. eSTREAM, the ECRYPT Stream Cipher Project. Official site: http://www.ecrypt.eu.org/stream/.
2. GNU multiple precision arithmetic library 4.2.1, 2006. Available at http://www.swox.com/gmp/.
3. Cryptico A/S. Algebraic analysis of Rabbit, 2003. White paper.
4. Cryptico A/S. Analysis of the key setup function in Rabbit, 2003. White paper.
5. Cryptico A/S. Hamming weights of the g-function, 2003. White paper.
6. Cryptico A/S. Periodic properties of Rabbit, 2003. White paper.
7. Cryptico A/S. Second degree approximations of the g-function, 2003. White paper.
8. Cryptico A/S. Security analysis of the iv-setup for Rabbit, 2003. White paper.
9. Daniel J. Bernstein. Notes on the ECRYPT stream cipher project (eSTREAM). Timings available at

http://cr.yp.to/streamciphers/#timings.
10. Martin Boesgaard, Mette Vesterager, Thomas Christensen, and Erik Zenner. The stream cipher Rabbit.

eSTREAM [1] Report 2005/024, 2005. Previously published in [11].
11. Martin Boesgaard, Mette Vesterager, Thomas Pedersen, Jesper Christiansen, and Ove Scavenius. Rabbit:

A new high-performance stream cipher. In Thomas Johansson, editor, FSE’03, volume 2887 of Lecture

Notes in Computer Science, pages 307–329. Springer, 2003.
12. Itsik Mantin and Adi Shamir. A practical attack on broadcast RC4. In Mitsuru Matsui, editor, FSE’01,

volume 2355 of Lecture Notes in Computer Science, pages 152–164. Springer, 2001.

A

Table 7. Digrams distribution in the 16-th and 17-th bits of G32(x).

pattern 00 01 10 11

log2 |bias| -16.50⋆ -18.15 -20.72⋆ -16.95

∆ -46 258 14 780 -2 480 33 960

Table 8. Digrams distribution in the 24-th and 25-th bits of G32(x).

pattern 00 01 10 11

log2 |bias| -16.73⋆ -18.55 -21.74 -17.27

∆ -39 604 11 185 1 223 27 198

Table 9. Trigrams distribution in the LSB’s of G32(x).

pattern 000 001 010 011 100 101 110 111

log2 |bias| -17.62⋆ -17.61⋆ -20.78 -19.50 -18.51⋆ -17.61 -20.78⋆ -17.28

∆ -21 273 -21 481 2 386 5 810 -11 494 21 481 -2 386 26 959

B

Proposition 1. For all integer n ≥ 2,
(

n−1
∑

k=0

2k

)2

= 1 +

2n−1
∑

k=n+1

2k.

Proof. By recurrence; for n = 2, we have (20 + 21)2 = 9 = 1 + 23. Now assume that the
equality holds for n, and let

Ω =

(

n−1
∑

k=0

2k

)2

,

then the (n + 1)-th term gives
(

n
∑

k=0

2k

)2

=
n
∑

k=0



2k
n
∑

j=0

2j





= Ω +

n−1
∑

k=0

2k+n +

n
∑

k=0

2k+n

= Ω +

2n−1
∑

k=n+1

2k + 22n+1

= 1 +

2n+1
∑

k=n+2

2k.

We conclude that the equality holds for all n ≥ 2. ⊓⊔

Proposition 2. For all even integer n ≥ 4,





n−2
∑

k= n
2
−1

2k





2

= 2n−2 +

2n−3
∑

k= 3

2
n−1

2k.

Proof. By recurrence; for n = 4, (2+22)2 = 36 = 22 +25. Now assume that the equality holds
for n, and let

Ω =





n−2
∑

k= n
2
−1

2k





2

,

then the (n + 2)-th term gives







n+2−2
∑

k= n+2

2
−1

2k







2

=





n
∑

k= n
2

2k





2

=
n
∑

k= n
2



2k
n
∑

j= n
2

2j





= Ω + (2n−1 + 2n)





n
∑

k= n
2

2k +

n−2
∑

k= n
2

2k



− 2
n
2
−1





n−2
∑

k= n
2

2k +

n−2
∑

k= n
2
−1

2k





= Ω + (2n−1 + 2n)





n−2
∑

k= n
2
+1

2k + 2n+1



− 2
n
2
−1





n−1
∑

k= n
2
+1

2k + 2
n
2
−1





= Ω +
2n−3
∑

k= 3n
2

2k +
2n−2
∑

k= 3n
2

+1

2k + 22n + 22n+1 −
3n
2
−2
∑

k=n

2k − 2n−2

= 2n−2 +







2n−3
∑

k= 3n
2
−1

2k






+

2n−3
∑

k= 3n
2

2k +

2n−2
∑

k= 3n
2

+1

2k + 22n + 22n+1 −
3n
2
−2
∑

k=n

2k − 2n−2.

At this point the negative sum added with the 2
3n
2
−1 of the first sum gives 2n, and the

remaining negative term cancels the first term 2n−2, so we get

2n +

2n−3
∑

k= 3n
2

2k +

2n−3
∑

k= 3n
2

2k +

2n−2
∑

k= 3n
2

+1

2k + 22n + 22n+1 = 2n +

2n+1
∑

k= 3n
2

+2

2k.

We conclude that the equality holds for all even n ≥ 4. ⊓⊔

