Algebraic methods for cryptanalysis

Jean-Philippe Aumasson
1. State-of-the-art algebraic methods
2. Attack on a real-world cipher
1. State-of-the-art algebraic methods
Block cipher

\[E : \{0, 1\}^k \times \{0, 1\}^n \mapsto \{0, 1\}^n \]

- \(k \): secret key size
- \(n \): block size
- e.g., \(k = n = 128 \)
- family of permutations \(\{ E_K \}_{K \in \{0,1\}^k} \)
- inverse mapping \(E_K^{-1} : \{0, 1\}^k \times \{0, 1\}^n \mapsto \{0, 1\}^n \)
- encryption: \(M \mapsto C = E_K(M) \)
- decryption: \(C \mapsto M = E_K^{-1}(C) \)
- ex: DES, AES, IDEA
Stream cipher

\[E : \{0, 1\}^k \times \{0, 1\}^v \mapsto \{0, 1\}^\ell \]

- \(k \): secret key size
- \(v \): initial value (IV) size
- \(\ell \): keystream size
- e.g., \(k = 128, n = 96, \ell < 2^{64} \)
- pseudo-random generator with seed \((V, K)\)
- encryption: \(M \mapsto C = M \oplus E_K(V) \)
- decryption: \(C \mapsto M = C \oplus E_K(V) \)
- ex: RC4 (WEP/WPA), A5/1 (GSM), E0 (Bluetooth)
Standard **adversarial model** for stream ciphers

- algorithm of the cipher known
- key K fixed and unknown
- adversary makes chosen-IV queries $E_K(V)$
- adversary tries to recover (information on) K
- adversary tries to **distinguish** E_K from a random generator

Exhaustive key search: 2^{k-1} trials on average
Stream ciphers often described as algorithms

Ex: RC4 [Rivest-94]

1. for $i = 0, \ldots, 255$
2. $T[i] \leftarrow i$
3. $j \leftarrow 0$
4. for $i = 0, \ldots, 255$
5. $j \leftarrow (j + T[i] + K[i]) \mod 256$
6. $T[i] \leftrightarrow T[j]$
Any stream cipher $E : (K, V) \mapsto S \in \{0, 1\}^\ell$ is associated with ℓ polynomial equations over GF(2), e.g.

\[
\begin{align*}
S_0 &= K_0 K_{10} K_{37} V_2 V_7 + K_2 K_3 V_0 V_9 + K_2 + K_5 + V_8 \\
S_1 &= K_3 K_4 V_0 V_1 V_2 + K_4 V_3 V_0 V_9 + V_7 + V_8 \\
\cdots &= \cdots \\
S_{\ell-1} &= K_0 K_1 K_2 K_3 + V_0 V_1 V_2 V_3 V_4 + 1
\end{align*}
\]
Any stream cipher $E : (K, V) \mapsto S \in \{0, 1\}^\ell$ is associated with ℓ polynomial equations over GF(2), e.g.

\[
S_0 = K_0 K_{10} K_{37} V_2 V_7 + K_2 K_3 V_0 V_9 + K_2 + K_5 + V_8 \\
S_1 = K_3 K_4 V_0 V_1 V_2 + K_4 V_3 V_0 V_9 + V_7 + V_8 \\
\cdots = \cdots \\
S_{\ell-1} = K_0 K_1 K_2 K_3 + V_0 V_1 V_2 V_3 V_4 + 1
\]

For security, equations should be

- dense
- of high degree

Ideally, each coefficient null with prob. $1/2$
Classical **algebraic attacks** on $E : (K, V) \mapsto S$

- find low-degree equations $f_i(K, V, S) = 0$
- solve system, to recover K when V and S known (NP-hard)
Classical **algebraic attacks** on $E : (K, V) \mapsto S$

- find low-degree equations $f_i(K, V, S) = 0$
- solve system, to recover K when V and S known
 (NP-hard)

State-of the art methods:

- find Gröbner bases of a polynomial ideal
- algorithms F_4, F_5, XL, XSL

Ex: 40 random quadratic equations in 20 variables over GF(2^8) solvable in 2^{45} CPU cycles [Yang et al.-07]
How to exploit the algebraic structure without solving an algebraic system?

Cube attacks [Dinur-Shamir-09]
How to exploit the algebraic structure without solving an algebraic system?

Cube attacks [Dinur-Shamir-09]

General idea:

- high-order differentiation to obtain linear equations
- solve a linear system in $O(n^3)$
Differentiation n times of a degree-n polynomial yields the coefficient of the highest-degree monomial

\[f(X_1, X_2, X_3, X_4) = X_1 + X_1 X_2 X_3 + X_1 X_2 X_4 \]
\[= X_1 + X_1 X_2 X_3 + X_1 X_2 X_4 + 0 \times X_1 X_2 X_3 X_4 \]

Sum over all values of \((X_1, X_2, X_3, X_4)\):

\[f(0, 0, 0, 0) + f(0, 0, 0, 1) + f(0, 0, 1, 0) + \cdots + f(1, 1, 1, 1) = 0 \]
Differentiation $m < n$ times of degree-n polynomial yields a polynomial of degree $\leq (n - m)$

$$f(X_1, X_2, X_3, X_4) = X_1 + X_1 X_2 X_3 + X_1 X_2 X_4$$
$$= X_1 + X_1 X_2 (X_3 + X_4)$$

Fix X_3 and X_4, sum over all values of (X_1, X_2):

$$\sum_{(X_1, X_2) \in \{0, 1\}^2} f(X_1, X_2, X_3, X_4) = 4 \times X_1 + (X_3 + X_4)$$
$$= X_3 + X_4$$
X_1 and X_2 public and variable (initial value)

X_3 and X_4 fixed and unknown (secret key)

Black-box queries to $f(\cdot, \cdot, X_3, X_4)$ with chosen (X_1, X_2)
X_1 and X_2 public and variable (initial value)

X_3 and X_4 fixed and unknown (secret key)

Black-box queries to $f(\cdot, \cdot, X_3, X_4)$ with chosen (X_1, X_2)

Evaluate of $(X_3 + X_4)$ via order-2 derivative:

$$\sum_{(X_1, X_2) \in \{0,1\}^2} f(X_1, X_2, X_3, X_4) = X_3 + X_4$$

Just need to know that the factor of X_1X_2 is $(X_3 + X_4)$
On a stream cipher \(f : (K, V) \mapsto S: \)

Phase 1: find monomials with linear derivative

\[
f(K, V) = \cdots + V_1 V_3 V_5 V_7(K_2 + K_3 + K_5) + \cdots
\]

\[
f(K, V) = \cdots + V_1 V_2 V_6 V_8 V_{12}(K_1 + K_2) + \cdots
\]

\[
\cdots = \cdots
\]

\[
f(K, V) = \cdots + V_3 V_4 V_5 V_6(K_3 + K_4 + K_5) + \cdots
\]

(reconstruct polynomials with linearity tests)

Phase 2: evaluate the polynomials in \(K \), solve the system

Complexity: exponential in the order of derivatives, polynomial in the key size
Variant: cube testers
[Aumasson-Dinur-Meier-Shamir-09]

- make high-order differentiation
- compute statistics on values obtained

Attack more rounds than standard cube attacks
Use as distinguisher, not for key-recovery
Summary (cube attacks)

- recover keys of ciphers of low degree over GF(2)
- high-order derivative to obtain a linear system of equations

Open problems

- how to choose good variables for differentiation?
- how to adapt to extensions of GF(2)?
2. Attack on a real-world cipher

[Aumasson-Dinur-Henzen-Meier-Shamir-09]
Grain-128

- state-of-the-art design (2006)
- by Hell, Johansson (Uni Lund), Meier (FHNW)
- developed within UE NoE project (eSTREAM)
- known attacks on reduced versions only
- implemented in the Bouncycastle Java library
Grain-128

128-bit key, 96-bit IV

degree-(2 + 3) update function (deg NFSR = 2, deg $h = 3$)
Method for finding variables for differentiation:

Evolutionary algorithm: generic discrete optimization tool

In a nutshell: population = subset of variables

1. initialize population pseudorandomly
2. reproduction (crossover + mutation)
3. selection of best fitting individuals
4. go to 2.

#generations (steps 2-4) before halting = parameter
Efficient implementation of derivation over several instances:

- on hardware field-programmable gate array (FPGA)
- parallelization 256×32
High-complexity attack

- 2^{40} for order-40 derivation
- 64 times
- 256 clockings per trial

2^{54} basic operations in total
High-complexity attack

- 2^{40} for order-40 derivation
- 64 times
- 256 clockings per trial

2^{54} basic operations in total

Results

Imbalance observed on reduced version with up to 237 initialization clockings (out of 256)

\Rightarrow derivative is an imbalanced Boolean function
Extrapolation (Matlab)

By standard general linear regression

⇒ order-77 differentiation gives imbalanced function
Summary (attack on Grain-128)

- combines discrete optimization (EA) and cube testers
- first “cracking machine” for a stream cipher
- Grain-128 arguably broken (no 128-bit security)

Open problems

- which other ciphers are vulnerable?
- optimization: insights on the search space topology?
Algebraic methods for cryptanalysis

Jean-Philippe Aumasson